Approximate evaluation of functional integrals generated by the relativistic Hamiltonian
https://doi.org/10.29235/1561-2430-2020-56-1-72-83
Abstract
An approximate evaluation of matrix-valued functional integrals generated by the relativistic Hamiltonian is considered. The method of evaluation of functional integrals is based on the expansion in the eigenfunctions of Hamiltonian generating the functional integral. To find the eigenfunctions and the eigenvalues the initial Hamiltonian is considered as a sum of the unperturbed operator and a small correction to it, and the perturbation theory is used. The eigenvalues and the eigenfunctions of the unperturbed operator are found using the Sturm sequence method and the reverse iteration method. This approach allows one to significantly reduce the computation time and the used computer memory compared to the other known methods.
About the Authors
E. A. AyryanRussian Federation
Edik A. Ayryan – Ph. D. (Physics and Mathematics), Head of Sector, Laboratory of Information Technologies, Joint Institute for Nuclear Research (6, Joliot-Curie Str., 141980, Dubna); RUDN University (6, Miklukho-Maklay Str., 117198, Moscow)
M. Hnatic
Slovakia
Michal Hnatic – Dr. Sc. (Physics and Mathematics), Deputy Director, Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research (6, Joliot-Curie Str., 141980, Dubna, Russian Federation); Institute of Experimental Physics of the Slovak Academy of Sciences (IEP SAS) (47, Watsonova Str., 04001, Košice, Slovak Re public); Faculty of Science P. J. Safarik University (9, Park Angelinum, 04001, Košice, Slovak Republic)
V. B. Malyutin
Belarus
Victor B. Malyutin – Dr. Sc. (Physics and Mathematics), Principal Researcher
11, Surganov Str., 220072, MinskReferences
1. Yanovich L. A. Approximate Evaluation of Continual Integrals with Respect to Gaussian Measures. Minsk, Nauka i tekhnika Publ., 1976. 382 p. (in Russian).
2. Elepov B. S., Kronberg А. А., Мikhailov G. А., Sabelfeld K. K. Solution of Boundary Value Problems by Monte-Carlo Method. Novosibirsk, Science Publ., 1980. 174 p. (in Russian).
3. Sabelfeld K. K. Approximate evaluation of Wiener continual integrals by Monte-Carlo method. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki = Computational Mathematics and Mathematical Physics, 1979, vol. 19, no. 1, pp. 29–43 (in Russian).
4. Egorov A. D., Sobolevsky P. I., Yanovich L. A. Approximate Methods of Evaluation of Continual Integrals. Minsk, Nauka i tekhnika Publ., 1985. 309 p. (in Russian).
5. Egorov A. D., Sobolevsky P. I., Yanovich L. A. Functional Integrals: Approximate Evaluation and Applications. Dordrecht, Kluwer Academic Pabl., 1993. 400 p. https://doi.org/10.1007/978-94-011-1761-6
6. Egorov A. D., Zhidkov Е. P., Lobanov Yu. Yu. Introduction to Theory and Applications of Functional Integration. Мoscow, Fizmatlit Publ., 2006. 400 p. (in Russian).
7. Feynman R. P., Hibbs A. R. Quantum Mechanics and Path Integrals. New York, McGraw-Hill, 1965. 382 p.
8. Horacio S. Wio. Path Integrals for Stochastic Processes: an introduction. World Scientific Publ. Company, 2013. 176 p. https://doi.org/10.1142/8695
9. Ayryan E. A., Еgorov А. D., Кulyabov D. S., Malyutin V. B., Sevastyanov L. А. Application of functional integrals to stochastic equations. Mathematical Models and Computer Simulations, 2017, vol. 9, no. 3, pp. 339–348. https://doi.org/10.1134/s2070048217030024
10. Ayryan E. A., Egorov A. D., Kulyabov D. S., Malyutin V. B., Sevastyanov L. A. Functional integrals method for systems of stochastic differential equations. Vestsі Natsyianal’nai akademіі navuk Belarusі. Seryia fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2018, vol. 54, no. 3, pp. 279–289 (in Russian). https://doi.org/10.29235/1561-2430-2018-54-3-279-289
11. Malyutin V. B. Evaluation of functional integrals using Sturm sequences. Vestsі Natsyianal’nai akademіі navuk Belarusі. Seryia fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2016, no. 4, pp. 32–37 (in Russian).
12. Malyutin V. B. Evaluation of functional integrals generated by some nonrelativistic Hamiltonians. Vestsі Natsyianal’nai akademіі navuk Belarusі. Seryia fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2018, vol. 54, no. 1, pp. 44–49 (in Russian).
13. Malyutin V. B. Approximate evaluation of functional integrals with centrifugal potential. Vestsі Natsyianal’nai akademіі navuk Belarusі. Seryia fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2019, vol. 55, no. 2, pp. 152–157 (in Russian). https://doi.org/10.29235/1561-2430-2019-55-2-152-157
14. Ichinose T., Tamura H. Propagation of a Dirac particle. A path integral approach. Journal of Mathematics and Physics, 1984, vol. 25, no. 6, pp. 1810–1819. https://doi.org/10.1063/1.526360
15. Ichinose T., Tamura H. The zitterbewegung of a Dirac particle in two-dimensional space-time. Journal of Mathematics and Physics, 1988, vol. 29, no. 1, pp. 103–109. https://doi.org/10.1063/1.528162
16. Schiff L. Quantum Mechanics. New York, McCraw-Hill Book Company, 1955. 417 p.
17. Wilkinson J. H. The Algebraic Eigenvalue Problem. Oxford, 1965. 662 p.
18. Landau L. D., Lifshits Е. M. Course of Theoretical Physics. Volume 3. Quantum Mechanics. Nonrelativistic Theory. Moscow, Nauka Publ., 1989. 768 p. (in Russian).
19. Ayryan E. A., Malyutin V. B. Application of functional polynomials to approximation of matrix-valued functional integrals. Bulletin of Peoples’ Friendship University of Russia. Series Mathematics Informatics Physics, 2014, no. 1, pp. 55–58.