Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

Hidden symmetry of the 16D oscillator and its 9D coulomb analogue

https://doi.org/10.29235/1561-2430-2020-56-2-206-216

Abstract

We present the quadratic Hahn algebra QH(3) as an algebra of the hidden symmetry for a certain class of exactly solvable potentials, generalizing the 16D oscillator and its 9D coulomb analogue to the generalized version of the Hurwitz transformation based on SU (1,1)⊕ SU (1,1)  . The solvability of the Schrodinger equation of these problems by the variables separation method are discussed in spherical and parabolic (cylindrical) coordinates. The overlap coefficients between wave functions in these coordinates are shown to coincide with the Clebsch – Gordan coefficients for the SU(1,1) algebra.

About the Authors

А. N. Lavrenov
Belarusian State Pedagogical University named after Maxim Tank
Belarus

Alexandre N. Lavrenov – Ph. D. (Physics and Mathematics), Assistant Professor, Assistant Professor of the Department of the Chair of Information Technologies in Education

18, Sovetskaya Str., 220050, Minsk



I. А. Lavrenov
Octonion Technology Ltd.
Belarus

Ivan A. Lavrenov – Leading Specialist

25, Ya. Kupala Str., 220030, Minsk



References

1. Kustaanheimo P., Stiefel E. Perturbation theory of Kepler motion based on spinor regularization. Journal für die Reine und Angewandte Mathematik, 1965, vol. 218, pp. 204–219. https://doi.org/10.1515/crll.1965.218.204

2. Polubarinov I. V. On Application of Hopf Fiber Bundles in Quantum Theory. Dubna, JINR, 1984. 24 p. (Preprint / Joint Institute for Nuclear Research; E2-84-607).

3. Le V.-H., Nguyen T.-S., Phan N.-H. A hidden non-Abelian monopole in a 16-dimensional isotropic harmonic oscillator. Journal of Physics A, 2009, vol. 42, no. 17, pp. 175204. https://doi.org/10.1088/1751-8113/42/17/175204

4. Le V.-H., Nguyen T.-S. A non-Abelian SO(8) monopole as generalization of Dirac-Yang monopoles for a 9-dimensional space. Journal of Mathematical Physics, 2011, vol. 52, no. 3, pp. 032105. https://doi.org/10.1063/1.3567422

5. Le V.-H., Truong C.-T., Phan T.-T. On the SO (10, 2) dynamical symmetry group of the MICZ-Kepler problem in a nine-dimensional space. Journal of Mathematical Physics, 2011, vol. 52, no. 7, pp. 072101. https://doi.org/10.1063/1.3606515

6. Phan N.-H., Le V.-H. Generalized Runge-Lenz vector and a hidden symmetry of the nine-dimensional MICZ-Kepler problem. Journal of Mathematical Physics, 2012, vol. 53, no. 8, pp. 082103. https://doi.org/10.1063/1.4740514

7. Nguyen T.-S., Le D.-N., Thoi T.-Q. N., Le V.-H. Exact analytical solutions of the Schrödinger equation for the nine-dimensional MICZ-Kepler problem. Journal of Mathematical Physics, 2015, vol. 56, no. 5, pp. 052103. https://doi.org/10.1063/1.4921171

8. Phan N.-H., Le D.-N., Thoi T.-Q. N., Le V.-H. Variables separation and superintegrability of the nine-dimensional MICZ-Kepler problem. Journal of Mathematical Physics, 2018, vol. 59, no. 3, pp. 032102. https://doi.org/10.1063/1.4997693

9. Eisenhart L. P. Separable systems of Stackel. Annals of Mathematics, 1934, vol. 35, no. 2, pp. 284–305. https://doi.org/10.2307/1968433

10. Eisenhart L. P. Enumeration of potentials for which one-particle Schrodinger equations are separable. Physical Review, 1948, vol. 74, no. 1, pp. 87–89. https://doi.org/10.1103/PhysRev.74.87

11. Makarov A. A., Smorodinsky J. A., Valiev K., Winternitz P. A systematic search for nonrelativistic systems with dynamical symmetries. Nuovo Cimento A, 1967, vol. 52, no. 4, pp. 1061–1084. https://doi.org/10.1007/BF02755212

12. Evans N. W. Superintegrability in classical mechanics. Physical Review A, 1990, vol. 41, no. 10, pp. 5666–5676. https://doi.org/10.1103/PhysRevA.41.5666

13. Kalnins E. G., Williams G. C., Miller W. Jr., Pogosyan G. S. Superintegrability in three-dimensional Euclidean space. Journal of Mathematical Physics, 1999, vol. 40, no. 2, pp. 708–725. https://doi.org/10.1063/1.532699

14. Kalnins E. G., Kress J. M., Miller W. Jr. Fine structure for 3D second-order superintegrable systems: three-parameter potentials. Journal of Physics A, 2007, vol. 40, no. 22, pp. 5875–5892. https://doi.org/10.1088/1751-8113/40/22/008

15. Kalnins E. G., Kress J. M., Miller W. Jr. Second order superintegrable systems in conformally flat spaces. III. Threedimensional classical structure theory. Journal of Mathematical Physics, 2005, vol. 46, no. 10, pp. 103507. https://doi.org/10.1063/1.2037567

16. Kalnins E. G., Kress J. M., Miller W. Jr. Nondegenerate three-dimensional complex Euclidean superintegrable systems and algebraic varieties. Journal of Mathematical Physics, 2007, vol. 48, no. 11, pp. 113518. https://doi.org/10.1063/1.281782

17. Verrier P. E., Evans N. W. A new superintegrable Hamiltonian. Journal of Mathematical Physics, 2008, vol. 49, no. 2, pp. 022902. https://doi.org/10.1063/1.2840465

18. McSween E., Winternitz P. Integrable and superintegrable Hamiltonian systems in magnetic fields. Journal of Mathematical Physics, 2000, vol. 41, no. 5, pp. 2957–2967. https://doi.org/10.1063/1.533283

19. Boschi-Filhot H., M de Souza, Vaidya A. N. General potentials described by SO(2,1) dynamical algebra in parabolic coordinate systems. Journal of Physics A, 1991, vol. 24, no. 21, pp. 4981–4988. https://doi.org/10.1088/0305-4470/24/21/012

20. Gritsev V. V., Kurochkin Y. A. The Higgs algebra and the Kepler problem in R3. Journal of Physics A, 2000, vol. 33, no. 22, pp. 4073–4080. https://doi.org/10.1088/0305-4470/33/22/310

21. Gritsev V. V., Kurochkin Y. A., Otchik V. S. Nonlinear symmetry algebra of the MIC-Kepler problem on the sphere S3. Journal of Physics A, 2000, vol. 33, no. 27, pp. 4903–4910. https://doi.org/10.1088/0305-4470/33/27/307

22. Zhedanov A. S. Hidden symmetry algebra and overlap coefficients for two ring-shaped potentials. Journal of Physics A, 1993, vol. 26, no. 18, pp. 4633–4642. https://doi.org/10.1088/0305-4470/26/18/027

23. Frappat L., Gaboriaud J., Vinet L., Vinet S., Zhedanov A. S. The Higgs and Hahn algebras from a Howe duality perspective. Physics Letters A, 2019, vol. 383, no. 14, pp. 15-31–15-35. https://doi.org/10.1016/j.physleta.2019.02.024

24. Gaboriaud J., Vinet L., Vinet S., Zhedanov A. S. The generalized Racah algebra as a commutant. Journal of Physics: Conference Series, 2019, vol. 1194, pp. 012034. https://doi.org/10.1088/1742-6596/1194/1/012034

25. Gaboriaud J., Vinet L., Vinet S., Zhedanov A. S. The Racah algebra as a commutant and Howe duality. Journal of Physics A: Mathematical and Theoretical, 2018, vol. 51, no. 50, pp. 50LT01. https://doi.org/10.1088/1751-8121/aaee1a

26. Howe R. Remarks on Classical Invariant Theory. Transactions of the American Mathematical Society, 1989, vol. 313, no. 2, pp. 539–570. https://doi.org/10.1090/S0002-9947-1989-0986027-X

27. Rowe D. J., Carvalho M. J., Repka J. Dual pairing of symmetry and dynamical groups in physics. Reviews of Modern Physics, 2012, vol. 84, no. 2, pp. 711–757. https://doi.org/10.1103/RevModPhys.84.711

28. Mardoyan L. G., Petrosyan M. G. 4D singular oscillator and generalized MIC-Kepler system. Physics of Atomic Nuclei, 2007, vol. 70, no. 3, pp. 572–575. https://doi.org/10.1134/S1063778807030180

29. Pris I. E., Tolkachev Е. А. Diogen atom as a four-dimensional isotropic singular oscillator with a bond. Yadernaya fizika = Physics of Atomic Nuclei, 1991, vol. 54, no. 1, pp. 962–966 (in Russian).

30. Pletyukhov M. V., Tolkachev E. A. SO(6,2) dynamical symmetry of the SU(2) MIC-Kepler problem. Journal of Physics A, 1999, vol. 32, no. 23, pp. L249–L253. https://doi.org/10.1088/0305-4470/32/23/101

31. Pletyukhov M. V., Tolkachev E. A. 8D oscillator and 5D Kepler problem: The case of nontrivial constraints. Journal of Mathematical Physics, 1999, vol. 40, no. 1, pp. 93–100. https://doi.org/10.1063/1.532761

32. Pletyukhov M. V., Tolkachev E. A. Hurwitz transformation and oscillator representation of a 5D “isospin” particle. Reports on Mathematical Physics, 1999, vol. 43, no. 1–2, pp. 303–311. https://doi.org/10.1016/S0034-4877(99)80039-1


Review

Views: 862


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)