Hidden symmetry of the 16D oscillator and its 9D coulomb analogue
https://doi.org/10.29235/1561-2430-2020-56-2-206-216
Abstract
We present the quadratic Hahn algebra QH(3) as an algebra of the hidden symmetry for a certain class of exactly solvable potentials, generalizing the 16D oscillator and its 9D coulomb analogue to the generalized version of the Hurwitz transformation based on SU (1,1)⊕ SU (1,1) . The solvability of the Schrodinger equation of these problems by the variables separation method are discussed in spherical and parabolic (cylindrical) coordinates. The overlap coefficients between wave functions in these coordinates are shown to coincide with the Clebsch – Gordan coefficients for the SU(1,1) algebra.
About the Authors
А. N. LavrenovBelarus
Alexandre N. Lavrenov – Ph. D. (Physics and Mathematics), Assistant Professor, Assistant Professor of the Department of the Chair of Information Technologies in Education
18, Sovetskaya Str., 220050, Minsk
I. А. Lavrenov
Belarus
Ivan A. Lavrenov – Leading Specialist
25, Ya. Kupala Str., 220030, Minsk
References
1. Kustaanheimo P., Stiefel E. Perturbation theory of Kepler motion based on spinor regularization. Journal für die Reine und Angewandte Mathematik, 1965, vol. 218, pp. 204–219. https://doi.org/10.1515/crll.1965.218.204
2. Polubarinov I. V. On Application of Hopf Fiber Bundles in Quantum Theory. Dubna, JINR, 1984. 24 p. (Preprint / Joint Institute for Nuclear Research; E2-84-607).
3. Le V.-H., Nguyen T.-S., Phan N.-H. A hidden non-Abelian monopole in a 16-dimensional isotropic harmonic oscillator. Journal of Physics A, 2009, vol. 42, no. 17, pp. 175204. https://doi.org/10.1088/1751-8113/42/17/175204
4. Le V.-H., Nguyen T.-S. A non-Abelian SO(8) monopole as generalization of Dirac-Yang monopoles for a 9-dimensional space. Journal of Mathematical Physics, 2011, vol. 52, no. 3, pp. 032105. https://doi.org/10.1063/1.3567422
5. Le V.-H., Truong C.-T., Phan T.-T. On the SO (10, 2) dynamical symmetry group of the MICZ-Kepler problem in a nine-dimensional space. Journal of Mathematical Physics, 2011, vol. 52, no. 7, pp. 072101. https://doi.org/10.1063/1.3606515
6. Phan N.-H., Le V.-H. Generalized Runge-Lenz vector and a hidden symmetry of the nine-dimensional MICZ-Kepler problem. Journal of Mathematical Physics, 2012, vol. 53, no. 8, pp. 082103. https://doi.org/10.1063/1.4740514
7. Nguyen T.-S., Le D.-N., Thoi T.-Q. N., Le V.-H. Exact analytical solutions of the Schrödinger equation for the nine-dimensional MICZ-Kepler problem. Journal of Mathematical Physics, 2015, vol. 56, no. 5, pp. 052103. https://doi.org/10.1063/1.4921171
8. Phan N.-H., Le D.-N., Thoi T.-Q. N., Le V.-H. Variables separation and superintegrability of the nine-dimensional MICZ-Kepler problem. Journal of Mathematical Physics, 2018, vol. 59, no. 3, pp. 032102. https://doi.org/10.1063/1.4997693
9. Eisenhart L. P. Separable systems of Stackel. Annals of Mathematics, 1934, vol. 35, no. 2, pp. 284–305. https://doi.org/10.2307/1968433
10. Eisenhart L. P. Enumeration of potentials for which one-particle Schrodinger equations are separable. Physical Review, 1948, vol. 74, no. 1, pp. 87–89. https://doi.org/10.1103/PhysRev.74.87
11. Makarov A. A., Smorodinsky J. A., Valiev K., Winternitz P. A systematic search for nonrelativistic systems with dynamical symmetries. Nuovo Cimento A, 1967, vol. 52, no. 4, pp. 1061–1084. https://doi.org/10.1007/BF02755212
12. Evans N. W. Superintegrability in classical mechanics. Physical Review A, 1990, vol. 41, no. 10, pp. 5666–5676. https://doi.org/10.1103/PhysRevA.41.5666
13. Kalnins E. G., Williams G. C., Miller W. Jr., Pogosyan G. S. Superintegrability in three-dimensional Euclidean space. Journal of Mathematical Physics, 1999, vol. 40, no. 2, pp. 708–725. https://doi.org/10.1063/1.532699
14. Kalnins E. G., Kress J. M., Miller W. Jr. Fine structure for 3D second-order superintegrable systems: three-parameter potentials. Journal of Physics A, 2007, vol. 40, no. 22, pp. 5875–5892. https://doi.org/10.1088/1751-8113/40/22/008
15. Kalnins E. G., Kress J. M., Miller W. Jr. Second order superintegrable systems in conformally flat spaces. III. Threedimensional classical structure theory. Journal of Mathematical Physics, 2005, vol. 46, no. 10, pp. 103507. https://doi.org/10.1063/1.2037567
16. Kalnins E. G., Kress J. M., Miller W. Jr. Nondegenerate three-dimensional complex Euclidean superintegrable systems and algebraic varieties. Journal of Mathematical Physics, 2007, vol. 48, no. 11, pp. 113518. https://doi.org/10.1063/1.281782
17. Verrier P. E., Evans N. W. A new superintegrable Hamiltonian. Journal of Mathematical Physics, 2008, vol. 49, no. 2, pp. 022902. https://doi.org/10.1063/1.2840465
18. McSween E., Winternitz P. Integrable and superintegrable Hamiltonian systems in magnetic fields. Journal of Mathematical Physics, 2000, vol. 41, no. 5, pp. 2957–2967. https://doi.org/10.1063/1.533283
19. Boschi-Filhot H., M de Souza, Vaidya A. N. General potentials described by SO(2,1) dynamical algebra in parabolic coordinate systems. Journal of Physics A, 1991, vol. 24, no. 21, pp. 4981–4988. https://doi.org/10.1088/0305-4470/24/21/012
20. Gritsev V. V., Kurochkin Y. A. The Higgs algebra and the Kepler problem in R3. Journal of Physics A, 2000, vol. 33, no. 22, pp. 4073–4080. https://doi.org/10.1088/0305-4470/33/22/310
21. Gritsev V. V., Kurochkin Y. A., Otchik V. S. Nonlinear symmetry algebra of the MIC-Kepler problem on the sphere S3. Journal of Physics A, 2000, vol. 33, no. 27, pp. 4903–4910. https://doi.org/10.1088/0305-4470/33/27/307
22. Zhedanov A. S. Hidden symmetry algebra and overlap coefficients for two ring-shaped potentials. Journal of Physics A, 1993, vol. 26, no. 18, pp. 4633–4642. https://doi.org/10.1088/0305-4470/26/18/027
23. Frappat L., Gaboriaud J., Vinet L., Vinet S., Zhedanov A. S. The Higgs and Hahn algebras from a Howe duality perspective. Physics Letters A, 2019, vol. 383, no. 14, pp. 15-31–15-35. https://doi.org/10.1016/j.physleta.2019.02.024
24. Gaboriaud J., Vinet L., Vinet S., Zhedanov A. S. The generalized Racah algebra as a commutant. Journal of Physics: Conference Series, 2019, vol. 1194, pp. 012034. https://doi.org/10.1088/1742-6596/1194/1/012034
25. Gaboriaud J., Vinet L., Vinet S., Zhedanov A. S. The Racah algebra as a commutant and Howe duality. Journal of Physics A: Mathematical and Theoretical, 2018, vol. 51, no. 50, pp. 50LT01. https://doi.org/10.1088/1751-8121/aaee1a
26. Howe R. Remarks on Classical Invariant Theory. Transactions of the American Mathematical Society, 1989, vol. 313, no. 2, pp. 539–570. https://doi.org/10.1090/S0002-9947-1989-0986027-X
27. Rowe D. J., Carvalho M. J., Repka J. Dual pairing of symmetry and dynamical groups in physics. Reviews of Modern Physics, 2012, vol. 84, no. 2, pp. 711–757. https://doi.org/10.1103/RevModPhys.84.711
28. Mardoyan L. G., Petrosyan M. G. 4D singular oscillator and generalized MIC-Kepler system. Physics of Atomic Nuclei, 2007, vol. 70, no. 3, pp. 572–575. https://doi.org/10.1134/S1063778807030180
29. Pris I. E., Tolkachev Е. А. Diogen atom as a four-dimensional isotropic singular oscillator with a bond. Yadernaya fizika = Physics of Atomic Nuclei, 1991, vol. 54, no. 1, pp. 962–966 (in Russian).
30. Pletyukhov M. V., Tolkachev E. A. SO(6,2) dynamical symmetry of the SU(2) MIC-Kepler problem. Journal of Physics A, 1999, vol. 32, no. 23, pp. L249–L253. https://doi.org/10.1088/0305-4470/32/23/101
31. Pletyukhov M. V., Tolkachev E. A. 8D oscillator and 5D Kepler problem: The case of nontrivial constraints. Journal of Mathematical Physics, 1999, vol. 40, no. 1, pp. 93–100. https://doi.org/10.1063/1.532761
32. Pletyukhov M. V., Tolkachev E. A. Hurwitz transformation and oscillator representation of a 5D “isospin” particle. Reports on Mathematical Physics, 1999, vol. 43, no. 1–2, pp. 303–311. https://doi.org/10.1016/S0034-4877(99)80039-1