Localization by an external magnetic field of electrons on the ions of hydrogen-like donors in non-degenerate semiconductors
https://doi.org/10.29235/1561-2430-2020-56-2-239-252
Abstract
In the quasi-classical approximation of quantum mechanics a model for the localization of conduction electrons on the ions of hydrogen-like donors in an external magnetic field was developed. The thermal ionization energy of donors in lightly doped and moderately compensated crystals of gallium arsenide and indium antimonide of n-type was calculated depending on the induction of the external magnetic field. In contrast to the known theoretical works (which use variational methods for solving the Schrödinger equation), a simple analytical expression is proposed for the ionization energy of the donor in the magnetic field, which quantitatively agrees with the known experimental data. It is shown that the magnitude of the magnetic field induced by the orbital motion of the electron around the ion core of the donor is negligible compared to the external field and does not contribute to the ionization energy of donors.
About the Authors
N. A. PoklonskiBelarus
Nikolai A. Poklonski – Dr. Sc. (Physics and Mathematics), Professor
4, Nezavisimosti Ave., 220030, Minsk
A. N. Dzeraviaha
Belarus
Aliaksandr N. Dzeraviaha – Postgraduate Student
4, Nezavisimosti Ave., 220030, Minsk
S. A. Vyrko
Belarus
Sergey A. Vyrko – Ph. D. (Physics and Mathematics), Senior Researcher
4, Nezavisimosti Ave., 220030, Minsk
References
1. Durkan J., Elliot R. J., March N. H. Localization of electrons in impure semiconductors by a magnetic field. Review of Modern Physics, 1968, vol. 40, no. 4, pp. 812–815. https://doi.org/10.1103/RevModPhys.40.812
2. Yafet Y., Keyes R. W., Adams E. N. Hydrogen atom in a strong magnetic field. Journal of Physics and Chemistry of Solids, 1956, vol. 1, no. 3, pp. 137–142. https://doi.org/10.1016/0022-3697(56)90020-8
3. Larsen D. M. Shallow donor levels of InSb in a magnetic field. Journal of Physics and Chemistry of Solids, 1968, vol. 29, no. 2, pp. 271–280. https://doi.org/10.1016/0022-3697(68)90071-1
4. Zawadzki W., Pfeffer P., Najda S. P., Yokoi H., Takeyama S., Miura N. Experimental and theoretical study of magnetodonors in GaAs and InP at megagauss fields. Physical Review B, 1994, vol. 49, no. 3, pp. 1705–1710. https://doi.org/10.1103/PhysRevB.49.1705
5. Raymond A., Robert J. L., Zawadzki W., Wlasak J. Ionization energy of magnetodonors in InSb. Journal of Physics C: Solid State Physics, 1984, vol. 17, no. 13, pp. 2381–2389. https://doi.org/10.1088/0022-3719/17/13/019
6. Jouault B., Raymond A., Zawadzki W. Ionization energy of magnetodonors in pure bulk GaAs. Physical Review B, 2002, vol. 65, no. 24, pp. 245210 (1–7). https://doi.org/10.1103/PhysRevB.65.245210
7. Bychkov Yu. A. The quantum theory of the electrical conductivity of metals in strong magnetic fields. Soviet Physics Journal of Experimental and Theoretical Physics, 1961, vol. 12, no. 3, pp. 483–491.
8. Arkhincheev V. E. On the influence of magnetic field on the probability of diffusing particle capture by absorbing traps. Journal of Experimental and Theoretical Physics, 2019, vol. 128, no. 3, pp. 485–488. https://doi.org/10.1134/S1063776119020018
9. Peierls R. Model-making in physics. Contemporary Physics, 1980, vol. 21, no. 1, pp. 3–17. https://doi.org/10.1080/00107518008210938
10. Weisskopf V. F. Search for simplicity: quantum mechanics of the hydrogen atom. American Journal of Physics, 1985, vol. 53, no. 3, pp. 206–207. https://doi.org/10.1119/1.14122
11. Ogluzdin V. E. The role of Bohr frequencies in the scattering, luminescence, and generation of radiation in different media. Physics Uspekhi, 2006, vol. 49, no. 4, pp. 401–405. https://doi.org/10.1070/PU2006v049n04ABEH005803
12. Fermi E. Notes on Quantum Mechanics: A Course Given by Enrico Fermi at the University of Chicago. Chicago, The University of Chicago Press, 1995. vii+188 p.
13. Poole C. P. The Physics Handbook: Fundamentals and Key Equations. Weinheim, Wiley, 2007. xxii+514 p.
14. Malykin G. B. Thomas precession: correct and incorrect solutions. Physics Uspekhi, 2006, vol. 49, no. 8, pp. 837–853. https://doi.org/10.1070/PU2006v049n08ABEH005870
15. Kholmetskii A. L., Missevitch O. V., Yarman T. On the classical analysis of spin-orbit coupling in hydrogenlike atoms. American Journal of Physics, 2010, vol. 78, no. 4, pp. 428–432. https://doi.org/10.1119/1.3277052
16. Krasnopevtsev E. A. Quantum Mechanics in Applications to Solid State Physics. Novosibirsk, NGTU Publ., 2017. 355 p. (in Russian).
17. Shpol’skii E. V. Atomic Physics. 2 vols. Saint-Petersburg, Lan’ Publ., 2010. 560+448 p. (in Russian).
18. Jackson J. D. Classical Electrodynamics. New York, Wiley, 1999. xxii+808 p.
19. Poklonski N. A., Vyrko S. A., Podenok S. L. Statistical Physics of Semiconductors. Moscow, KomKniga Publ., 2005. 264 p. (in Russian).
20. Bellyustin S. V. Classical Electronic Theory. Moscow, Vysshaya shkola Publ., 1971. 350 p. (in Russian).
21. Vasil’ev B. V., Lyuboshits V. L. Virial theorem and some properties of the electron gas in metals. Physics Uspekhi, 1994, vol. 37, no. 4, pp. 345–351. https://doi.org/10.1070/PU1994v037n04ABEH000018
22. Lyuboshits V. L. The Virial theorem and the conditions of equilibrium of a system of charged particles in the magnetic field. Dubna, Joint Institute for Nuclear Research (JINR), 1996. 18 p. (in Russian).
23. Poklonski N. A., Vyrko S. A., Dzeraviaha A. N. Thermal ionization energy of hydrogen-like impurities in semiconductor materials. Journal of the Belarusian State University. Physics, 2020, no. 2, pp. 28–41. https://doi.org/10.33581/2520-2243-2020-2-28-41 (in Russian).
24. Haraldson S., Ribbing C.-G. ESR-resonances in doped GaAs and GaP. Journal of Physics and Chemistry of Solids, 1969, vol. 30, no. 10, pp. 2419–2425. https://doi.org/10.1016/0022-3697(69)90066-3
25. Watanabe K., Ueno M., Wakaki M., Abe O., Murakami H. GaAs:Se and GaAs:Te photoconductive detectors in 300 µm region for astronomical observations. Japanese Journal of Applied Physics, 2008, vol. 47, no. 11, pp. 8261–8264. https://doi.org/10.1143/JJAP.47.8261
26. Madelung O. Semiconductors: Data Handbook. Berlin, Springer, 2004. xiv+692 p. https://doi.org/10.1007/978-3-642-18865-7
27. Poklonski N. A., Vyrko S. A., Poklonskaya O. N., Zabrodskii A. G. Transition temperature from band to hopping direct current conduction in crystalline semiconductors with hydrogen-like impurities: Heat versus Coulomb attraction. Journal of Applied Physics, 2011, vol. 110, no. 12, pp. 123702 (1–7). https://doi.org/10.1063/1.3667287
28. Aronzon B. A., Meilikhov E. Z. Statistics of electrons in semiconductors in a quantizing magnetic field. Journal of Experimental and Theoretical Physics, 1972, vol. 34, no. 5, pp. 1014–1017.
29. Meilikhov E. Z., Aronzon B. A. The influence of a quantizing magnetic field on the electron concentration in semiconductors. Doklady Akademii nauk SSSR [Proceedings of the Academy of Sciences of the USSR], 1972, vol. 206, no. 6, pp. 1329–1332. (in Russian).
30. Litvinenko K. L., Nikzad L., Pidgeon C. R., Allam J., Cohen L. F., Ashley T., Emeny M., Zawadzki W., Murdin B. N. Temperature dependence of the electron Landé g factor in InSb and GaAs. Physical Review B, 2008, vol. 77, no. 3, pp. 033204 (1–4). https://doi.org/10.1103/PhysRevB.77.033204
31. Oestreich M., Rühle W. W. Temperature dependence of the electron Landé g factor in GaAs. Physical Review Letters, 1995, vol. 74, no. 12, pp. 2315–2318. https://doi.org/10.1103/PhysRevLett.74.2315
32. Askerov B. M., Figarova S. R. Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases. Berlin, Springer, 2010, xii+374 p. https://doi.org/10.1007/978-3-642-03171-7
33. Vdovin A. V., Skok E. M. Precise measurement of the free electron g-factor in InSb. Physica Status Solidi B, 1986, vol. 136, no. 2, pp. 603–613. https://doi.org/10.1002/pssb.2221360225
34. Karasyuk V. A., Beckett D. G. S., Nissen M. K., Villemaire A., Steiner T. W., Thewalt M. L. W. Fourier-transform magnetophotoluminescence spectroscopy of donor-bound excitons in GaAs. Physical Review B, 1994, vol. 49, no. 23, pp. 16381–16397. https://doi.org/10.1103/PhysRevB.49.16381
35. Okulov V. I., Pamyatnykh E. A., Al’shanskii G. A. Fermi-liquid anomaly of the concentration dependence of the g-factor of the conduction electrons in a semiconductor with hybridized impurity states. Low Temperature Physics, 2009, vol. 35, no. 2, pp. 146–148. https://doi.org/10.1063/1.3075946