К теории интерполирования функций на множествах матриц с адамаровым умножением
https://doi.org/10.29235/1561-2430-2022-58-3-263-279
Аннотация
Работа посвящена проблеме интерполяции функций, заданных на множествах матриц с умножением в смысле Адамара, и содержит некоторые известные сведения об умножении матриц по Адамару и его свойствах. Для функций, заданных на множествах квадратных и прямоугольных матриц, приведены различные интерполяционные многочлены лагранжева типа, содержащие как операцию матричного умножения в смысле Адамара, так и обычное произведение матриц. В случае аналитических функций, определенных на множествах квадратных матриц с адамаровым умножением, рассмотрены некоторые аналоги тригонометрических интерполяционных формул лагранжева типа. Приведены матричные аналоги сплайнов и интеграла Коши на множествах матриц с умножением по Адамару. Рассмотрено некоторое его применение в теории интерполирования. Доказаны теоремы о сходимости отдельных интерполяционных процессов Лагранжа для аналитических функций, заданных на множестве матриц с умножением в смысле Адамара. Полученные результаты основаны на применении некоторых известных положений теории интерполирования скалярных функций. Изложение материала иллюстрируется рядом примеров.
Об авторах
М. В. ИгнатенкоБеларусь
Игнатенко Марина Викторовна – кандидат физико-математических наук, доцент, доцент кафедры
веб-технологий и компьютерного моделирования
пр. Независимости, 4, 220030, Минск
Л. А. Янович
Беларусь
Янович Леонид Александрович – член-корреспондент Национальной академии наук Беларуси, доктор
физико-математических наук, профессор, главный научный сотрудник
ул. Сурганова, 11, 220072, Минск
Список литературы
1. Магнус, Я. Р. Матричное дифференциальное исчисление с приложениями к статистике и эконометрике / Я. Р. Магнус, Х. Нейдеккер. – М.: Физматлит, 2002. – 496 с.
2. Маркус, М. Обзор по теории матриц и матричных неравенств / М. Маркус, Х. Минк. – М.: Наука, 1972. – 232 с.
3. Хорн, Р. Матричный анализ / Р. Хорн, Ч. Джонсон. – М.: Мир, 1989. – 655 с.
4. Makarov, V. L. Methods of Operator Interpolation / V. L. Makarov, V. V. Khlobystov, L. A. Yanovich. – Київ: Iн-т математики НАН України, 2010. – 517 с. – (Праці Ін-ту математики НАН України. – Vol. 83: Математика та ii застосування).
5. Янович, Л. А. Основы теории интерполирования функций матричных переменных / Л. А. Янович, М. В. Игнатенко; Нац. акад. наук Беларуси, Ин-т математики. – Минск: Беларус. навука, 2016. – 281 c.
6. Янович, Л. А. О некоторых аналогах формул сплайн-интерполирования для функций матричной переменной / Л. А. Янович, М. В. Игнатенко // Докл. Нац. акад. наук Беларуси. – 2015. – Т. 59, № 4. – С. 17–24.
7. Yanovich, L. A. Interpolation formulas for functions, defined on the sets of matrices with different multiplication rules / L. A. Yanovich, M. V. Ignatenko // Журн. обчисл. та прикл. матем. – 2016. – № 2 (122). – C. 140–158.
8. Yanovich, L. A. On a spline-interpolation of functions with matrix variables / L. A. Yanovich, M. V. Ignatenko // Analytic Methods of Analysis and Differential Equations (AMADE-2015): Proc. of the 8th Int. Workshop, Minsk, Belarus, September 14–19, 2015 / Belarusian State University, Institute of Mathematics of the Belarusian National Academy of Sciences, Lomonosov Moscow State University; general editorship by S. V. Rogozin, M. V. Dubatovskaya. – UK, Cottenham: Cambridge Scientific Publishers, 2016. – P. 149–160.
9. Игнатенко, М. В. О некоторых интерполяционных формулах для функций, заданных на множестве матриц с умножением по Адамару / М. В. Игнатенко, Л. А. Янович // Аналитические методы анализа и дифференциальных уравнений (AMADE-2015): тез. докл. 8-го Междунар. науч. семинара, посвящ. памяти проф. А. А. Килбаса, Минск, 14–19 сент. 2015 г. / Белорус. гос. ун-т; Ин-т математики НАН Беларуси; Моск. гос. ун-т им. М. В. Ломоносова; под ред. С. В. Рогозина. – Минск: Ин-т математики НАН Беларуси, 2015. – С. 40–41.
10. Янович, Л. А. Интерполяционные методы аппроксимации операторов, заданных на функциональных пространствах и множествах матриц / Л. А. Янович, М. В. Игнатенко; Нац. акад. наук Беларуси, Ин-т математики. – Минск: Беларус. навука, 2020. – 476 c.
11. Игнатенко, М. В. О сходимости интерполяционного процесса Лагранжа для функций, заданных на множестве матриц с адамаровым умножением / М. В. Игнатенко, Л. А. Янович // Математическое моделирование и новые образовательные технологии в математике: материалы респ. науч.-практ. конф., Брест, 23–24 апр. 2020 г. / Брест. гос. ун-т им. А. С. Пушкина; под общ. ред. А. И. Басика. – Брест: БрГУ, 2020. – С. 77–83.
12. Крылов, В. И. Об определении наименьшей области, голоморфность в которой обеспечивает сходимость эрмитовского интерполирования при любой системе узлов / В. И. Крылов // Докл. АН СССР. – 1951. – Т. 78, № 5. – С. 857–859.
13. Янович, Л. А. Сходимость интерполирования по скалярным матричным узлам в классе аналитических функций / Л. А. Янович, А. В. Тарасевич // Тр. Ин-та математики. – 2006. – Т. 14, № 2. – С. 102–111.