1. Wide-Gap Chalcopyrites / eds.: S. Siebentritt, U. Rau. - Berlin; Heidelberg: Springer, 2006. - 260 p. https://doi.org/10.1007/b105644
2. Erwin, S. C. Tailoring ferromagnetic chalcopyrites / S. C. Erwin, I. Žutić // Nat. Mater. - 2004. - Vol. 3, № 6. - P. 410-414. https://doi.org/10.1038/nmat1127
3. Picozzi, S. Engineering ferromagnetism / S. Picozzi // Nat. Mater. - 2004. - Vol. 3, № 6. - P. 349-350. https://doi.org/10.1038/nmat1137
4. Room-Temperature Ferromagnetism in (Zn1-xMnx)GeP2 Semiconductors / S. Cho [et al.] // Phys. Rev. Lett. - 2002. - Vol. 88, № 25. - P. 257203 (1-4). https://doi.org/10.1103/PhysRevLett.88.257203
5. A new high-TC ferromagnet: Manganese-doped CdGeAs2 chalcopyrite / R. V. Demin [et al.] // Tech. Phys. Lett. - 2004. - Vol. 30, № 11. - P. 924-926. https://doi.org/10.1134/1.1829344
6. Eckerlin, P. Zur Kenntnis des Systems Be3N2 - Si3N4, IV. Die Kristallstruktur von BeSiN2 / P. Eckerlin // Z. Anorg. Allg. Chem. - 1967. - Vol. 353, № 5-6. - P. 225-235. https://doi.org/10.1002/zaac.19673530502
7. Wintenberger, M. Groupe spatial et ordre des atomes de zinc et de germanium dans ZnGeN2 / M. Wintenberger, M. Maunaye, Y. Laurent // Mater. Res. Bull. - 1973. - Vol. 8, № 9. - P. 1049-1053. https://doi.org/10.1016/0025-5408(73)90109-8
8. Cloitre, T. Epitaxial growth of ZnSiN2 single-crystalline films on sapphire substrates / T. Cloitre, A. Sere, R. L. Aulombard // Superlattices Microstruct. - 2004. - Vol. 36, № 4-6. - P. 377-383. https://doi.org/10.1016/j.spmi.2004.09.056
9. Skachkov, D. Candidates for p-type doping of ZnGeN2 / D. Skachkov, W. R. L. Lambrecht // J. Appl. Phys. - 2020. - Vol. 127, № 7. - P. 075707 (1-9). https://doi.org/10.1063/1.5132338
10. Band gap and electronic structure of MgSiN2 determined using soft X-ray spectroscopy and density functional theory / T. de Boer [et al.] // Phys. Status Solidi (RRL). - 2015. - Vol. 9, № 4. - P. 250-254. https://doi.org/10.1002/pssr.201510043
11. Structure and lattice dynamics of the wide band gap semiconductors MgSiN2 and MgGeN2 / M. Råsander [et al.] // J. Appl. Phys. - 2017. - Vol. 122, № 8. - P. 085705 (1-9). https://doi.org/10.1063/1.4985775
12. High-pressure synthesis of new compounds, ZnSiN2 and ZnGeN2 with distorted wurtzite structure / T. Endo [et al.] // J. Mater. Sci. Lett. - 1992. - Vol. 11, № 7. - P. 424-426. https://doi.org/10.1007/BF00728730
13. Larson, W. L. Synthesis and properties of ZnGeN2 / W. L. Larson, H. P. Maruska, A. Stevenson // J. Electrochem. Soc. - 1974. - Vol. 121, № 12. - P. 1673-1674. https://doi.org/10.1149/1.2401769
14. Punya, A. Quasiparticle band structure of Zn-IV-N2 compounds / A. Punya, W. R. L. Lambrecht, M. van Schilfgaarde // Phys. Rev. B. - 2011. - Vol. 84, № 16. - P. 165204. https://doi.org/10.1103/PhysRevB.84.165204
15. Lambrecht, W. R. L. Structure and phonons of ZnGeN2 / W. R. L. Lambrecht, E. Alldredge, K. Kim // Phys. Rev. B. - 2005. - Vol. 72, № 15. - P. 155202 (1-6). https://doi.org/10.1103/PhysRevB.72.155202
16. Limpijumnong, S. Electronic structure and optical properties of ZnGeN2 / S. Limpijumnong, S. N. Rashkeev, W. R. L. Lambrecht // MRS Proc. - 1998. - Vol. 537. - P. G6.11 (1-6). https://doi.org/10.1557/PROC-537-G6.11
17. Maunaye, M. Preparation et proprietes de ZnGeN2 / M. Maunaye, J. Lang // Mater. Res. Bull. - 1970. - Vol. 5, № 9. - P. 793-796. https://doi.org/10.1016/0025-5408(70)90029-2
18. Epitaxial growth and structural characterization of single crystalline ZnGeN2 / L. D. Zhu [et al.] // MRS Proc. - 1998. - Vol. 537. - P. G3.8. https://doi.org/10.1557/PROC-537-G3.8
19. Structural, electronic and optical properties of II-IV-N2 compounds (II = Be, Zn; IV = Si, Ge) / V. L. Shaposhnikov [et al.] // Phys. Status Solidi B. - 2008. - Vol. 245, № 1. - P. 142-148. https://doi.org/10.1002/pssb.200743400
20. Kresse, G. Efficient interactive schemes for ab initio total-energy calculations using a plane-wave basis set / G. Kresse, J. Furthmüller // Phys. Rev. B. - 1996. - Vol. 54, № 16. - P. 11169-11186. https://doi.org/10.1103/PhysRevB.54.11169
21. Ceperly, D. M. Ground state of the electron gas by a stochastic method / D. M. Ceperly, B. J. Alder // Phys. Rev. Lett. - 1980. - Vol. 45, №. 7. - P. 566-569. https://doi.org/10.1103/PhysRevLett.45.566
22. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation / J. P. Perdew [et al.] // Phys. Rev. B. - 1992. - Vol. 46, № 11. - P. 6671-6687. https://doi.org/10.1103/PhysRevB.46.6671
23. Perdew, J. P. Generalized gradient approximation made simple / J. P. Perdew, K. Burke, M. Ernzerhof // Phys. Rev. Lett. - 1996. - Vol. 77, № 18. - P. 3865-3868. https://doi.org/10.1103/physrevlett.77.3865
24. WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties / P. Blaha [et al.]. - Vienna: Vienna University of Technology, 2018.