The structure and optical properties of semiconductor nitrides MgSiN2, MgGeN2, ZnSiN2, ZnGeN2
https://doi.org/10.29235/1561-2430-2022-58-4-424-430
Abstract
Theoretical modeling within LDA, GGA, and PBE approximations was herein performed to determine the electronic band structures of MgGeN2, MgSiN2, ZnGeN2, and ZnSiN2 nitride compounds and their optical properties. It is established that the compounds with germanium are direct-gap semiconductors with the band gap values of 3.0 eV (MgGeN2) and 1.7 eV (ZnGeN2), while the silicon-based compounds are indirect-gap semiconductors with the band gap values of 4.6 eV (MgSiN2) and 3.7 eV (ZnSiN2). Optical properties analysis showed the prospects of using MgGeN2 and ZnGeN2 in optoelectronics.
About the Authors
A. V. KrivosheevaBelarus
Anna V. Krivosheeva – Dr. Sc. (Physics and Mathematics), Leading Researcher, Belarusian State University of Informatics and Radioelectronics.
6, P. Brovka Str., 220013, Minsk
V. L. Shaposhnikov
Belarus
Victor L. Shaposhnikov – Ph. D. (Physics and Mathematics), Leading Researcher. Belarusian State University of Informatics and Radioelectronics.
6, P. Brovka Str., 220013, Minsk
References
1. Siebentritt S., Rau U. (eds.) Wide-Gap Chalcopyrites. Berlin, Heidelberg, Springer, 2006. 260 p. https://doi.org/10.1007/b105644
2. Erwin S. C., Žutić I. Tailoring ferromagnetic chalcopyrites. Nature Materials, 2004, vol. 3, no. 6, pp. 410–414. https://doi.org/10.1038/nmat1127
3. Picozzi S. Engineering ferromagnetism. Nature Materials, 2004, vol. 3, no. 6, pp. 349–350. https://doi.org/10.1038/nmat1137
4. Cho S., Choi S., Cha G.-B., Hong S. C., Kim Y., Zhao Y.-J. [et al.]. Room-Temperature Ferromagnetism in (Zn1–xMnx)GeP2 Semiconductors. Physical Review Letters, 2002, vol. 88, no. 25, pp. 257203 (1–4). https://doi.org/10.1103/PhysRevLett.88.257203
5. Demin R. V., Koroleva L. I., Marenkin S. F., Mikhailov S. G., Novotortsev V. M., Kalinnikov V. T. [et al.]. A new high-TC ferromagnet: Manganese-doped CdGeAs2 chalcopyrite. Technical Physics Letters, 2004, vol. 30, no. 11, pp. 924–926. https://doi.org/10.1134/1.1829344
6. Eckerlin P. Zur Kenntnis des Systems Be3N2 – Si3N4, IV. Die Kristallstruktur von BeSiN2. Zeitschrift für Anorganische und Allgemeine Chemie (ZAAC), 1967, vol. 353, no. 5–6, pp. 225–235 (in German). https://doi.org/10.1002/zaac.19673530502
7. Wintenberger M., Maunaye M., Laurent Y. Groupe spatial et ordre des atomes de zinc et de germanium dans ZnGeN2. Materials Research Bulletin, 1973, vol. 8, no. 9, pp. 1049–1053. https://doi.org/10.1016/0025-5408(73)90109-8
8. Cloitre T., Sere A., Aulombard R. L. Epitaxial growth of ZnSiN2 single-crystalline films on sapphire substrates. Superlattices and Microstructures, 2004, vol. 36, no. 4–6, pp. 377–383. https://doi.org/10.1016/j.spmi.2004.09.056
9. Skachkov D., Lambrecht W. R. L. Candidates for p-type doping of ZnGeN2. Journal of Applied Physics, 2020, vol. 127, no. 7, pp. 075707 (1–9). https://doi.org/10.1063/1.5132338
10. Boer T. de, Boyko T. D., Braun C., Schnick W., Moewes A. Band gap and electronic structure of MgSiN2 determined using soft X-ray spectroscopy and density functional theory. Physica Status Solidi (RRL), 2015, vol. 9, no. 4, pp. 250–254. https://doi.org/10.1002/pssr.201510043
11. Råsander M., Quirk J. B., Wang T., Mathew S., Davies R., Palgrave R. G., Moram M. A. Structure and lattice dynamics of the wide band gap semiconductors MgSiN2 and MgGeN2. Journal of Applied Physics, 2017, vol. 122, no. 8, pp. 085705 (1–9). https://doi.org/10.1063/1.4985775
12. Endo T., Sato Y., Takizawa H., Shimada M. High-pressure synthesis of new compounds, ZnSiN2 and ZnGeN2 with distorted wurtzite structure. Journal of Materials Science Letters, 1992, vol. 11, no. 7, pp. 424–426. https://doi.org/10.1007/BF00728730
13. Larson W. L., Maruska H. P., Stevenson A. Synthesis and properties of ZnGeN2. Journal of The Electrochemical Society, 1974, vol. 121, no. 12, pp. 1673–1674. https://doi.org/10.1149/1.2401769
14. Punya A., Lambrecht W. R. L., Schilfgaarde M. van. Quasiparticle band structure of Zn-IV-N2 compounds. Physical Review B, 2011, vol. 84, no. 16, pp. 165204. https://doi.org/10.1103/PhysRevB.84.165204
15. Lambrecht W. R. L., Alldredge E., Kim K. Structure and phonons of ZnGeN2. Physical Review B, 2005, vol. 72, no. 15, pp. 155202 (1–6). https://doi.org/10.1103/PhysRevB.72.155202
16. Limpijumnong S., Rashkeev S. N., Lambrecht W. R. L. Electronic structure and optical properties of ZnGeN2. MRS Proceedings, 1998, vol. 537, pp. G6.11 (1–6). https://doi.org/10.1557/PROC-537-G6.11
17. Maunaye M., Lang J. Preparation et proprietes de ZnGeN2. Materials Research Bulletin, 1970, vol. 5, no. 9, pp. 793–796. https://doi.org/10.1016/0025-5408(70)90029-2
18. Zhu L. D., Maruska P. H., Norris P. E., Yip P. W., Bouthillette L. O. Epitaxial growth and structural characterization of single crystalline ZnGeN2. MRS Proceedings, 1998, vol. 537, pp. G3.8. https://doi.org/10.1557/PROC-537-G3.8
19. Shaposhnikov V. L., Krivosheeva A. V., Arnaud DʼAvitaya F., Lazzari J.-L., Borisenko V. E. Structural, electronic and optical properties of II-IV-N2 compounds (II = Be, Zn; IV = Si, Ge). Physica Status Solidi B, 2008, vol. 245, no. 1, pp. 142–148. https://doi.org/10.1002/pssb.200743400
20. Kresse G., Furthmüller J. Efficient interactive schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, vol. 54, no. 16, pp. 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169
21. Ceperly D. M., Alder B. J. Ground state of the electron gas by a stochastic method. Physical Review Letters, 1980, vol. 45, no. 7, pp. 566–569. https://doi.org/10.1103/PhysRevLett.45.566
22. Perdew J. P., Chevary J. A., Vosko S. H., Jackson K. A., Pederson M. R., Singh D. J., Fiolhais C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 1992, vol. 46, no. 11, pp. 6671–6687. https://doi.org/10.1103/PhysRevB.46.6671
23. Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, vol. 77, no. 18, pp. 3865–3868. https://doi.org/10.1103/physrevlett.77.3865
24. Blaha P., Schwarz K., Madsen G. K., Kvasnicka D., Luitz J. WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. Vienna, Vienna University of Technology, 2018.