1. Birkhoff G. Relativity and Modern Physics. Harvard University Press, 1923. 283 p. https://doi.org/10.1126/science.58.1513.539
2. Poincare H. Sur la dynamique de l’electron. Rendiconti del Circolo matematico di Palermo, 1906, vol. 21, pp. 129-176. https://doi.org/10.1007/bf03013466
3. Birkhoff G. Flat space-time and gravitation. Proceedings of the National Academy of Sciences, 1944, vol. 30, no. 10, pp. 324-334. https://doi.org/10.1073/pnas.30.10.324
4. Gupta S. Quantization of Einstein’s Gravitational Field: General Treatment. Proceedings of the Physical Society. Section A, 1952, vol. 65, no. 8, pp. 608-619. https://doi.org/10.1088/0370-1298/65/8/304
5. Thirring W. E. An alternative approach to the theory of gravitation. Annals of Physics, 1961, vol. 16, no. 1, pp. 97-117. https://doi.org/10.1016/0003-4916(61)90182-8
6. Deser S. Self-interaction and gauge invariance. General Relativity and Gravitation, 1970, vol. 1, pp. 9-18. https://doi.org/10.1007/bf00759198
7. Feynman R. Feynman Lectures on Gravitation. CRC Press, 2018. 296 p. https://doi.org/10.1201/9780429502859
8. Logunov A., Mestvirishvili M. A. Relativistic theory of gravitation. Progress of Theoretical Physics, 1985, vol. 74, no. 1, pp. 31-50. https://doi.org/10.1143/ptp.74.31
9. Fronsdal C. On the theory of higher spin fields. Il Nuovo Cimento, 1958, vol. 9, pp. 416-443. https://doi.org/10.1007/bf02747684
10. Barnes K. J. Lagrangian theory for the second-rank tensor field. Journal of Mathematical Physics, 1965, vol. 6, pp. 788-794. https://doi.org/10.1063/1.1704335
11. Fock V. The Theory of Space, Time and Gravitation. Pergamon Press - Macmillan Company, 1964. 411 p. https://doi.org/10.1016/b978-0-08-010061-6.50012-3
12. Landau L., Lifshitz E. M. The Classical Theory of Fields. Oxford, Pergamon Press, 1975. 402 p.
13. Leonovich A., Vyblyi Yu. Fock energy-momentum tensor in Relativistic Theory of Gravitation. Methods of NonEuclidian Geometry in Modern Physics: Proceedings of the V International Conference. Minsk, 2007, pp. 207-211.
14. Leonovich A., Vyblyi Yu. The classical energy-momentum problem and Fock tensor in relativistic theory of gravitation. Nonlinear Phenomena in Complex Systems, 2018, vol. 21, no. 4, pp. 406-410.
15. Chernikov N., Tagirov E. A. The theory of conformal-invariant scalar field. Annales de l’Institut Henri Poincaré, 1968, vol. A9, pp. 109-141.
16. Oppenheimer J. R., Snyder H. On unlimited gravitational pressing. Physical Review, 1939, vol. 56, pp. 455-462. https://doi.org/10.1103/physrev.56.455
17. Weinberg S. Gravitation and Cosmology. New York, Wiley, 1972. 657 p.
18. Ohanian, N. S., Ruffini R. Gravitation and Spacetime. Cambridge University Press, 2013. 528 p. https://doi.org/10.1017/cbo9781139003391
19. Poisson E., Will C. Gravity. Cambridge University Press, 2014. 780 p. https://doi.org/10.1017/cbo9781139507486