1. Birkhoff, G. Relativity and Modern Physics / G. Birkhoff. - Harvard University Press, 1923. - 283 p. https://doi.org/10.1126/science.58.1513.539
2. Poincare, H. Sur la dynamique de l’electron / H. Poincare // Rendiconti Circolo Mat. Palermo. - 1906. - Vol. 21. - P. 129-176. https://doi.org/10.1007/bf03013466
3. Birkhoff, G. Flat space-time and gravitation / G. Birkhoff // Proc. Nat. Acad. Sci. - 1944. - Vol. 30, № 10. - P. 324-334. https://doi.org/10.1073/pnas.30.10.324
4. Gupta, S. Quantization of Einstein’s Gravitational Field: General Treatment / S. Gupta // Proc. Phys. Soc. Sect. A. - 1952. - Vol. 65, № 8. - P. 608-619. https://doi.org/10.1088/0370-1298/65/8/304
5. Thirring, W. E. An alternative approach to the theory of gravitation / W. E. Thirring // Ann. Phys. - 1961. - Vol. 16, № 1. - P. 97-117. https://doi.org/10.1016/0003-4916(61)90182-8
6. Deser, S. Self-interaction and gauge invariance / S. Deser // Gen. Rel. Grav. - 1970. - Vol. 1. - P. 9-18. https://doi.org/10.1007/bf00759198
7. Feynman, R. Feynman Lectures on Gravitation / R. Feynman. - CRC Press, 2018. - 296 p. https://doi.org/10.1201/9780429502859
8. Logunov, A. A. Relativistic theory of gravitation / A. A. Logunov, M. A. Mestvirishvili // Prog. Theor. Phys. - 1985. - Vol. 74, № 1. - P. 31-50. https://doi.org/10.1143/ptp.74.31
9. Fronsdal, C. On the theory of higher spin fields / C. Fronsdal // Il Nuovo Cimento. - 1958. - Vol. 9. - P. 416-443. https://doi.org/10.1007/bf02747684
10. Barnes, K. J. Lagrangian theory for the second-rank tensor field / K. J. Barnes // J. Math. Phys. - 1965.- Vol. 6. - P. 788-794. https://doi.org/10.1063/1.1704335
11. Fock, V. The Theory of Space, Time and Gravitation / V. Fock. - Pergamon Press - Macmillan Company, 1964. - 411 p. https://doi.org/10.1016/b978-0-08-010061-6.50012-3
12. Landau, L. D. The Classical Theory of Fields / L. D. Landau, E. M. Lifshitz. - Oxford: Pergamon Press, 1975. - 402 p.
13. eonovich, A. Fock energy-momentum tensor in Relativistic Theory of Gravitation / A. Leonovich, Yu. Vyblyi // Methods of Non-Euclidian Geometry in Modern Physics: Proc. of the V Int. Conf. - Minsk, 2007. - P. 207-211.
14. Leonovich, A The classical energy-momentum problem and Fock tensor in relativistic theory of gravitation / A. Leonovich, Yu. Vyblyi // Nonlinear Phenomena in Complex Systems. - 2018. - Vol. 21, № 4. - P. 406-410.
15. Chernikov, N. The theory of conformal-invariant scalar field / N. A. Chernikov, E. A. Tagirov // Annales de l’Institut Henri Poincaré. - 1968. - Vol. A9. - P. 109-141.
16. Oппенгеймер, Ю. О безграничном гравитационном сжатии / Ю. Оппенгеймер, Г. Снайдер // Альберт Эйнштейн и теория гравитации. - М.: Мир, 1979. - 592 с.
17. Weinberg, S. Gravitation and Cosmology / S. Weinberg. - New York: Wiley, 1972. - 657 p.
18. Ohanian, Н. С. Gravitation and Spacetime / Н. С. Ohanian, R. Ruffini. - Cambridge University Press, 2013. - 528 p. https://doi.org/10.1017/cbo9781139003391
19. Poisson, E. Gravity / E. Poisson, C. Will. - Cambridge University Press, 2014. - 780 p. https://doi.org/10.1017/cbo9781139507486