Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

INVESTIGATION OF Cu2ZnSnSe4 THIN FILMS BY ATOMIC FORCE MICROSCOPY

Abstract

In comparison to the traditional use of glass substrates, the thin films onto metal substrates offer improved device cooling, economical large-scale roll-to-roll processing, and applicability in lightweight, as well as flexible products. However, unlike glass, metal foils tend to exhibit rough surfaces. This article studies the substrate-type (Mo/glass and Мо-foil) effect on the topographic characteristics of the Cu2ZnSnSe4 films by atomic force microscopy (AFM). Cu2ZnSnSe4 thin films were prepared by the electrodeposition of stack copper/tin/copper/zinc (Cu/Sn/Cu/Zn) precursors, followed by selenization. AFM was
used to study the topographic characteristics of thin films, including grain size, surface roughness, and maximum height of the profile. It is shown that the films obtained on Mo/glass and Mo-foil substrates have similar roughness and in the both cases the grain structure is formed. The Cu2ZnSnSe4 thin films show relatively high surface roughness and maximum roughness profile height compared to Cu-Zn-Sn precursors. The increase in the surface roughness of the films was caused by the growth of grains during annealing and selenization processes.

About the Authors

A. V. Stanchik
Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus
Belarus
Postgraduate


S. M. Barajshuk
Belarusian State Agrarian Technical University
Belarus
Ph. D. (Physics and Mathematics), Head of the Department of Practical Training of Students


S. A. Bashkirov
Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus
Belarus
Ph. D. (Physics and Mathematics), Researcher


V. F. Gremenok
Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus
Belarus
D. Sc. (Physics and Mathematics), Head of the Laboratory of Solid State Physics


M. S. Tivanov
Belarusian State University
Belarus
Ph. D. (Physics and Mathematics), Head of the Energy Physics Department


M. V. Dergacheva
Sokolsky Institute of Fuel, Catalysis and Electrochemistry
Kazakhstan
D . S c. ( Chemistry)


K. A. Urazov
Sokolsky Institute of Fuel, Catalysis and Electrochemistry, Kazakh-British Technical University
Kazakhstan
Postgraduate


References

1. Solar cell efficiency tables (version 48) / M. A. Green [et al.] // Prog. Photovolt: Res. Appl. – 2016. – Vol. 24. – P. 905–913.

2. Green, M. A. Estimates of Te and In prices from direct mining of known ores / M. A. Green // Prog. Photovolt: Res. Appl. – 2006. – Vol. 14. – P. 347–359.

3. Fthenakis, V. M. Toxic Materials Released from Photovoltaic Modules During Fires: Health Risks / V. M. Fthenakis, P. D. Moskowitz // Prog. Photovolt: Res. Appl. – 1995. – Vol. 29, n 1. – P. 63–71.

4. Paranthaman, M. P. Semiconductor Materials for Solar Photovoltaic Cells / M. P. Paranthaman, W. Wong-Ng, R. N. Bhattacharya. – Switzerland: Springer International Publishing, 2016. – P. 25.

5. Formation of structure of the CdTe fi lm, recrystallized on Mo/glass substrate under high temperature and mechanical pressure / V. Mikli [et al.] // Thin Solid Films. – 2009. – Vol. 517, N 7. – P. 2252–2255.

6. Toshiyuki, Y. Characterization of Cu(In,Ga)Se2 thin fi lms prepared by thermal crystallization on Mo/glass substrate / Y. Toshiyuki, Y. Yukio, Y. Akira // Solar Energy Materials and Solar Cells. – 2001. – Vol. 67, N 1/4. – P. 77–82.

7. Characterization of thin-film a-Si:H/μc-Si:H tandem solar cells on glass substrates / A. Klossek [et al.] // Crystal Research and Technology. – 2013. – Vol. 48, N 5. – P. 279–286.

8. Synthesis of wurtzite Cu2ZnSnS4 thin fi lms directly on glass substrates by the solvothermal method / H. Guan [et al.] // Materials Letters. – 2015. – Vol. 159. – P. 200–203.

9. Schock, H.-W. Properties of Chalcopyrite-Based Materials and Film Deposition for Thin Film Solar Cells / H.-W. Schock. – Berlin: Springer Series in Photovoltaics, 2004. – 259 p.

10. Pagliaro, M. Flexible Solar Cells / M. Pagliaro, G. Palmisano, R. Ciriminna. – Italy: WILEY-VCH, 2008. – P. 190.

11. Structural Design of Flexible Solar Generators / K. Seifart [et al.] // Proc. of the 7th ESPC, Stresa, Italy, May 9–13 2005 / European Space Agency (ESA); ed. by A. Wilson. – Stresa, Italy, 2005. – P. 200–210.

12. Flexible Cu(In,Ga)Se2 thin-film solar cells for space application / K. Ottea [et al.] // Thin Solid Films. – 2006. – Vol. 511/512. – P. 613–622.

13. Petrusev A.S. Improving the efficiency of solar cells by a uniaxial tracker and acrylic hub. Sovremennye tekhnika i tekhnologii : sbornik trudov XX mezhdunarodnoi nauchno-prakticheskoi konferentsii studentov, aspirantov i molodykh uchenykh. T. 1 [Modern Techniques and Technologies: a collection of the works of XX international scientific-practical conference of students, graduate students and young scientists. Vol. 1]. Tomsk, Publisher of the Tomsk Polytechnic University, 2014, pp. 37–38. (in Russian)

14. A 21.5% efficient Cu(In,Ga)Se2 thin-film concentrator solar cell / J. S. Ward [et al.] // Prog. Photovolt: Res. Appl. – 2002. – Vol. 10. – P. 41–45.

15. Impact of substrate roughness on CuInxGa1-xSe2 device properties // W. K. Batchelor [et al.] // Solar Energy Materials and Solar Cells. – 2004. – Vol. 83, N 1. – P. 67–80.

16. CIGS solar cells on flexible stainless steel substrates / T. Satoh [et al.] // Proc. of the 28th IEEE Photovoltaic Specialists Conference, Anaheim, CA, 2000 / Electron Devices Society of the Institute of Electrical and Electronics Engineers; Edited by Simon Liu [et al.]. – Anaheim, CA, 2000. – P. 567–570.

17. Flexible and Light Weight Substrates for Cu(In,Ga)Se2 Solar Cells and Modules / M. Hartman [et al.] // Proc. of the 28th IEEE Photovoltaics Specialists Conference, Anaheim, CA, 2000 / еds: Simon Liu [et al.]. – Anaheim, CA, 2000. – P. 638–642.

18. The Application of Metallic Foils as Substrate for CIGS Thin Film Solar Cells / G. San Vicente [et al.] // Proc. of the 17th European Photovoltaic Solar Energy Conference, London, UK, 2001 / James & James Science Publishers Ltd.; Edited by P. Fath [et al.]. – London, UK, 2001. – P. 638–642.

19. Batchelor, W. K. Substrate and Back Contact Effects in CIGS Devices on Steel Foil / W.K. Batchelor // Proc. of the 29th IEEE Photovoltaics Specialist’s Conference, New Orleans, LA, 0-24 May 2002 / еds: Daniel Feuermann [et al.]. – New Orleans, LA, 2002. – P. 719.

20. Dependence of Film Surface Roughness on Surface Migration and Lattice Size in Thin Film Deposition / J. Huang [et al.] // American Control Conference, San Francisco, CA, USA June 29 – July 01, 2011./ Agilent Technologies; еds: Martha Grover [et al.]. – USA, 2011. – Р. 2957–2962.

21. Poruba, A. Optical absorption and light scattering in microcrystalline silicon thin films and solar cells / A. Poruba, A. Fejfar // J. Appl. Phys. – 2000. – Vol. 88. – P. 148–160.

22. Rowlands, S. F. Optical modelling of thin film solar cells with textured interfaces using the effective medium approximation / S. F. Rowlands, J. Livingstone, C. P. Lund // Solar Energy. – 2004. – Vol. 76, N 1/3. – P. 301–307.

23. Springer, J. Improved three-dimensional optical model for thin-film silicon solar cells / J. Springer, A. Poruba // J. Appl. Phys. – 2004. – Vol. 96. – P. 5329–5337.

24. Zeman, M. Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness / M. Zeman, R. Vanswaaij // J. Appl. Phys. – 2000. – Vol. 88. – P. 6436–6443.

25. Krc, J. Experimental investigation and modelling of light scattering in a-Si:H solar cells deposited on glass/ZnO:Al substrates / J. Krc, M. Zeman // Mater. Res. Soc. – 2002. – Vol. 715. – P. A13.3.1–A13.3.6.

26. Leblanc, F. Numerical modeling of the optical properties of hydrogenated amorphous-silicon-based p-i-n solar cells deposited on rough transparent conducting oxide substrates / F. Leblanc, J. Perrin // J. Appl. Phys. – 1994. – Vol. 75. – P. 1074.

27. Sahraei, N. Investigation of the Optical Absorption of a-Si:H Solar Cells on Micro- and Nano-Textured Surfaces / N. Sahraei [et al.] // Energy Procedia. – 2013. – Vol. 33. – P. 166–172.

28. Rykov A.S. Scanning probe microscopy of semiconductor materials and nanostructures. St. Petersburg, Nauka, 2001. 52 p. (in Russian)

29. Stanchik A.V., Bashkirov S.A., Gremenok V.F. Phase Analysis of Electrodeposited Cu-Zn-Sn Precursors for Solar Cells Based Cu2ZnSnSe4. Fizicheskoe obrazovanie v vuzakh [Physics in Higher Education], 2016, vol. 22, no. 1, pp. 137С–138С. (in Russian)

30. Roughness parameters / E. S. Gadelmawla [et al.] // J. Mater. Process. Technol. – 2002. – Vol. 123. – P. 133–145.

31. Das, S. Growth, fabrication and characterization of Cu2ZnSn(SxSe1–x)4 photovoltaic absorber and thin-film heterojunction solar cells: Diss. Master of Engineering: 08.09.14 / S. Das. – Columbia, 2014. – 106 p.

32. Stanchik A.V., Bashkirov S.A., Yakovenko Y.S., Gremenok V.F., Tashlykov I.S. Morphology and Typology of Electrodeposited Cu-Zn-Sn Precursors for Solar Cells Based on Cu2ZnSnSe4. Fizicheskoe obrazovanie v vuzakh [Physics in Higher Education], 2016, vol. 22, no. 1, pp. 106С–107С. (in Russian)

33. Tashlykov, I. S. Elemental composition, topography, and wettability of the surface of graphite modified by ion-assisted deposition of chromium coatings / I. S. Tashlykov, S. M. Baraishuk // Russ. J. Non-Ferrous Metals. – 2008. – Vol. 49, N 4. – P. 303–307.

34. Tashlykov, I. S. Composition, structure and surface morphology of silicon modified by ion dynamic mixing / I. Tashlykov, S. Baraishuk, O. Mikkalkovich, I. Antonovich // Przeglad Elektrotechniczny. – 2008. – Vol. 84, N 3. – P. 111–113.


Review

Views: 2965


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)