SYNTHESIS AND X-RAY INVESTIGATION OF Cu2CdSn(SxSe1–x)4 SOLID SOLUTIONS
https://doi.org/10.29235/1561-2430-2018-54-2-229-233
Abstract
The quaternary semiconductors Cu2CdSnS4, Cu2CdSnSe4 and Cu2CdSn(SxSe1–x)4 solid solutions were synthesized by the one-temperature method from the elementary components. The X-ray diffraction method showed that the obtained polycrystalline samples are single-phased. The unit cell parameters of the synthesized compounds and Cu2CdSn(SxSe1–x)4 solid solutions were determined from diffraction spectra by the full-profile analysis using the Rietveld method with the Fullprof software package. It has been established that with an increase in sulfur concentration, the unit cell parameters decrease smoothly linearly in accordance with the Vegard rule, which indicates the formation of a continuous series of solid solutions in the Cu2CdSn(SxSe1–x)4 system within the range 0 ≤ x ≤ 1. The parameter of crystal lattice tetragonal distortions h of the investigated compounds is calculated. The h values are close to 1 for all the compositions studied, which indicates a small crystal lattice distortion of the obtained samples.
About the Authors
A. U. ShelegBelarus
Alexander U. Sheleg – D. Sc. (Physics and Mathe matics), Professor, Chief Researcher.
19, P. Brovka Str., 220072, Minsk.
V. F. Gremenok
Belarus
Valery F. Gremenok – D. Sc. (Physics and Mathematics), Head of the Laboratory of Semiconductors Physics.
19, P. Brovka Str., 220072, Minsk.
A. S. Sereda
Belarus
Alexander S. Sereda – Master of Technical Sciences, Assistant of Information and Computer-Aided Systems Design Department.
6, P. Brovka Str., 220072, Minsk.
V. G. Hurtavy
Belarus
Vitali G. Hurtavy – Researcher.
19, P. Brovka Str., 220072, Minsk.
V. A. Chumak
Belarus
Vitaly A. Chumak – Junior Researcher.
19, P. Brovka Str., 220072, Minsk.
I. N. Tsyrelchuk
Belarus
Igor N. Tsyrelchuk – Ph. D. (Physics and Ma thematics), Associate Professor, Dean of the Faculty of Innovative Lifelong Learning.
6, P. Brovka Str., 220072, Minsk.
References
1. Shi X. Y., Huang F. Q., Liu M. L., Chen L. D. Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu2ZnSn1–xInxSe4. Applied Physics Letters, 2009, vol. 94, no. 12, pp. 122103. https://doi.org/10.1063/1.3103604
2. Ibáñez M., Zamani R., LaLonde A., Cadavid D., Li W., Shavel A., Arbiol J., Morante J. R., Gorsse S., Snyder G. J., Cabot A. Cu2ZnGeSe4 Nanocrystals: Synthesis and Thermoelectric Properties. Journal of the American Chemical Society, 2012, vol. 134, no. 9, pp. 4060–4063. https://doi.org/10.1021/ja211952z
3. Todorov T. K., Tang J., Bag S., Gunawan O., Gokmen T., Zhu Y., Mitzi D. B. Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu2ZnSn(S,Se)4 Solar Cells. Advanced Energy Materials, 2013, vol. 3, no. 1, pp. 34–38. https://doi.org/10.1002/aenm.201200348
4. Grossberg M., Krustok J., Raudoja J., Raadik T. The role of structural properties on deep defect states in Cu2ZnSnS4 studied by photoluminescence spectroscopy. Applied Physics Letters, 2012, vol. 101, no. 10, pp. 102102–102102-4. https://doi.org/10.1063/1.4750249
5. León M., Levcenko S., Serna R., Nateprov A., Gurieva G., Merino J. M., Schorr S., Arushanov E. Spectroscopic ellipsometry study of Cu2ZnGeSe4 and Cu2ZnSiSe4 poly-crystals. Materials Chemistry and Physics, 2013, vol. 141, no. 1, pp. 58–62. https://doi.org/10.1016/j.matchemphys.2013.04.024
6. Chetty R., Bali A., Mallik R. C. Thermoelectric properties of indium doped Cu2CdSnSe4. Intermetallics, 2016, vol. 72, pp. 17–24. https://doi.org/10.1016/j.intermet.2016.01.004
7. Sheleg A. U., Hurtavy V. G., Mudryi A. V., Zhivulko V. D., Valakh M. Ya., Yuhimchuk V. A., Babichuk I. S., Xie H., Saucedo E. Crystallographic and Optical Characteristics of Thin Films of Cu2ZnSn(SxSe1–x)4 Solid Solutions. Journal of Applied Spectroscopy, 2014, vol. 81, no. 5, pp. 776–781. https://doi.org/10.1134/s1063774515040203
8. Sheleg A. U., Hurtavy V. G., Chumak V. A. Synthesis and X-ray diffraction study of Cu2ZnSn(SxSe1–x)4 solid solutions. Crystallography Reports, 2015, vol. 60, no. 5, pp. 758–762. https://doi.org/10.1134/s1063774515040203
9. Wang W., Winkler M. T., Gunawan O., Gokmen T., Todorov T. K., Zhu Y., Mitzi D. B. Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency. Advanced Energy Materials, 2014. vol. 4, no. 7, pp. 36–45. https://doi.org/10.1002/aenm.201301465
10. Matsushita H., Maeda T., Katsui A., Takizawa T. Thermal analysis and synthesis from the melts of Cu-based quaternary compounds Cu–III–IV–VI4 and Cu2–II–IV–VI4 (II=Zn, Cd; III=Ga, In; IV=Ge, Sn; VI=Se). Journal of Crystal Growth, 2000, vol. 208, no. 1–4, pp. 416–422. https://doi.org/10.1016/s0022-0248(99)00468-6
11. Pilvet M., Kauk-Kuusik M., Grossberg M., Raadik T., Mikli V., Traksmaa R., Raudoja J., Timmo K., Krustok J. Modification of the optoelectronic properties of Cu2CdSnS4 through low-temperature annealing. Journal of Alloys and Compounds, 2017. vol. 723, pp. 820–825. https://doi.org/10.1016/j.jallcom.2017.06.307
12. Rodríguez-Carvajal J. Recent developments of the program FULLPROF. Commission on powder diffraction (IUCr). Newsletter, 2001, vol. 26, pp. 12–19.
13. Siebentritt S., Schorr S. Kesterites – a challenging material for solar cells. Progress in Photovoltaics: Research and Applications, 2012, vol. 20, no. 5, pp. 512–519. https://doi.org/10.1002/pip.2156
14. Zhang Y., Sun X., Zhang P., Yuan X., Huang F., Zhang W. Structural properties and quasiparticle band structures of Cu-based quaternary semiconductors for photovoltaic applications. Journal of Applied Physics, 2012, vol. 111, no. 6, pp. 063709-1–063709-6. https://doi.org/10.1063/1.3696964