Spontaneous, stimulated emission and laser generation in crystals and thin films of CuInSe2
https://doi.org/10.29235/1561-2430-2022-58-2-245-254
Abstract
Представлены результаты исследования спектров излучения кристаллов и тонких пленок CuInSe2 при непрерывном (2 Вт/см2) и наносекундном импульсном лазерном возбуждении в диапазоне плотности мощности возбуждения ~1–100 кВт/см2 и температурах 10–160 К. Обнаружено, что в кристаллах CuInSe2 стимулированное излучение возникает в спектральной области 1,033 эВ с минимальным уровнем пороговой накачки 9,8 кВт/см2, а при уровнях накачки 36–76 кВт/см2 наблюдается лазерное излучение. Установлено, что для тонких пленок CuInSe2, сформированных на стеклянных подложках с предварительно осажденным на стекло слоем молибдена (структура CuInSe2/Mo/стекло), характерно появление только стимулированного излучения в области энергий 1,014–1,097 эВ с минимальным уровнем пороговой накачки 30 кВт/см2 при температуре 10 К. Обсуждаются механизмы возникновения стимулированного и лазерного излучения в соединении CuInSe2.
About the Authors
A. V. MudryiBelarus
Alexander V. Mudryi – Ph. D. (Physics and Mathematics), Chief Researcher of the Laboratory of Optical Spectroscopy of Semiconductors
19, P. Brovka Str., 220072, Minsk
V. D. Zvivulko
Belarus
Vadim D. Zvivulko – Ph. D. (Physics and Mathematics), Head of the Laboratory of Optical Spectroscopy of Semiconductors
19, P. Brovka Str., 220072, Minsk
O. M. Borodavchenko
Belarus
Olga M. Borodavchenko – Researcher of the Laboratory of Optical Spectroscopy of Semiconductors
19, P. Brovka Str., 220072, Minsk
M. V. Yakushev
Russian Federation
Michael V. Yakushev – Dr. Sc. (Physics and Mathematics), Chief Researcher of the Laboratory of Nanoquantum Spintronics
18, S. Kovalevskaya Str., 620108, Ekaterinburg
V. N. Pavlovskii
Belarus
Viacheslav N. Pavlovskii – Ph. D. (Physics and Mathematics), Leading Researcher of the Center "Semiconductor Technologies and Lasers"
68-2, Nezavisimosti Ave., 220072, Minsk
E. V. Lutsenko
Belarus
Evgenii V. Lutsenko – Ph. D. (Physics and Mathematics), Deputy Head of the Center "Semiconductor Technologies and Lasers"
68-2, Nezavisimosti Ave., 220072, Minsk
G. P. Yablonskii
Belarus
Gennadii P. Yablonskii – Dr. Sc. (Physics and Mathematics), Head of the Center "Semiconductor Tech nologies and Lasers"
68-2, Nezavisimosti Ave., 220072, Minsk
References
1. Minoura S., Kodera K., Maekawa T., Miyazaki K., Niki S., Fujiwara H. Dielectric function of Cu(In,Ga)Se2-based polycrystalline materials. Journal of Applied Physics, 2013, vol. 113, no. 6, p. 063505 (14 pp.). https://doi.org/10.1063/1.479074
2. Yakushev M. V., Mudryi A. V., Gremenok V. F., Zalesski V. B., Romanov P. I., Feofanov Y. V., Martin R. W., Tomlinson R. D. Optical properties and band gap energy of CuInSe2 thin films prepared by two-stage selenisation process. Journal of Physics and Chemistry of Solids, 2003, vol. 64, no. 9–10, pp. 2005–2009. https://doi.org/10.1016/S0022-3697(03)00089-1
3. Chichibu S., Mizutani T., Murakami K., Shioda T., Kurafuji T., Nakanishi H., Niki S., Fons P. J., Yamada A. Band gap energies of bulk, thin-film, and epitaxial layers of CuInSe2 and CuGaSe2. Journal of Applied Physics, 1998, vol. 83, no. 7, pp. 3678–3689. https://doi.org/10.1063/1.366588
4. Aida Y., Depredurand V., Larsen J. K., Arai H., Tanaka D., Kurihara M., Siebentritt S. Cu-rich CuInSe2 solar cells with a Cu-poor surface. Progress in Photovoltaics: Research and Applications, 2015, vol. 23, no. 6, pp. 754–764. https://doi.org/10.1002/pip.2493
5. Feurer T., Carron R., Sevilla G. T., Fu F., Pisoni S., Romanyuk Y. E., Buecheler S., Tiwari A. N. Efficiency improvement of near-stoichiometric CuInSe2 solar cells for application in tandem devices. Advanced Energy Materials, 2019, vol. 9, no. 35, p. 1901428 (6 pp.). https://doi.org/10.1002/aenm.201901428
6. Jackson P., Wuerz R., Hariskos D., Lotter E., Witte W., Powalla M. Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6 %. Physica Status Solidi RRL, 2016, vol. 10, no. 8. pp. 583–586. https://doi.org/10.1002/pssr.201600199
7. Moret M., Briot G., Gil B., Lepetit T., Arzel L., Barreau N. High excitation photoluminescence effects as a probing tool for the growth of Cu(In,Ga)Se2. Proceedings of SPIE, 2015, vol. 9358, p. 9358A1 (7 pp.). https://doi.org/10.1117/12.2076938
8. Svitsiankou I. E., Pavlovskii V. N., Lutsenko E. V., Yablonskii G. P., Mudryi A. V., Zhivulko V. D., Yakushev M. V., Martin R. W. Stimulated emission and lasing in Cu(In,Ga)Se2 thin films. Journal of Physics D: Applied Physics, 2016, vol. 49, no. 9, p. 095106 (5 pp.). https://doi.org/10.1088/0022-3727/49/9/095106
9. Babbe F., Elanzeery H., Melchiorre M., Zelenina A., Siebentritt S. Potassium fluoride postdeposition treatment with etching step on both Cu-rich and Cu-poor CuInSe2 thin film solar cells. Physical Review Materials, 2018, vol. 2, no. 10, pp. 105405 (9 pp.). https://doi.org/10.1103/physrevmaterials.2.105405
10. Tomlinson R. D. Fabrication of CuInSe2 single crystals using melt-growth techniques. Solar Cells, 1986, vol. 16, pp. 17–26. https://doi.org/10.1088/0379-6787(86)90072-4
11. Paszkowicz W., Minikayev R., Piszora P., Trots D., Knapp M., Wejciehowski T., Baceewicz R. Thermal expansion of CuInSe2 in the 11–1,073 K range: An X-ray diffraction study. Applied Physics A. Materials Science Processing, 2014, vol. 116, no. 2, pp. 767–780. https://doi.org/10.1007/s00339-013-8146-9
12. Mudryi A. V., Bodnar I. V., Viktorov I. A., Gremenok V. F., Yakushev M. V., Tomlinson R. D., Hill A. E., Pilkington R. D. Optical properties of high-quality CuInSe2 single crystals. Applied Physics Letters, 2000, vol. 77, no. 16, pp. 2542– 2544. https://doi.org/10.1063/1.1308525
13. Yakushev M. V., Feofanov Y., Martin R. W., Tomlinson R. D., Mudryi A. V. Magneto-photoluminescence study of radiative recombination in CuInSe2 single crystals. Journal of Physics and Chemistry of Solids, 2003, vol. 64, no. 9–10, pp. 2011–2016. https://doi.org/10.1016/S0022-3697(03)00090-8
14. Luckert F., Yakushev M. V., Faugeras C., Karotki A. V., Mudryi A. V. Excitation power and temperature dependence of excitons in CuInSe2. Journal of Applied Physics, 2012, vol. 111, no. 9, p. 093507 (8 pp.). https://doi.org/10.1063/1.4709448
15. Yakushev M. V., Luckert F., Faugeras C., Karotki A. V., Mudryi A. V., Martin R. W. Excited states of the excitons in CuInSe2 single crystals. Applied Physics Letters, 2010, vol. 97, no. 15, p. 152110 (3 pp.). https://doi.org/10.1063/1.3502603
16. Babbe F., Elanzeery H., Wolter M. H., Santhosh K., Siebentritt S. The hunt for the third acceptor in CuInSe2 and Cu(In,Ga)Se2 absorber layers. Journal of Physics: Condensed Materials, 2019, vol. 31, no. 42, pp. 425702-1–425702-9. https:// doi.org./10.1088/1361-648X/ab2e24
17. Svitsiankou I. E., Pavlovskii V. N., Lutsenko E. V., Yablonskii G. P., Mudryi A. V., Borodavchenko O. M., Zhivulko V. D., Martin R. W., Yakushev M. V. Photoluminescence, stimulated and laser emission in CuInSe2 crystals. Applied Physics Letters, 2021, vol. 119, no. 21, p. 212103 (3 pp.). https://doi.org/10.1063/5.0060076
18. Kawashima T., Adachi S. Optical constants of CuGaSe2 and CuInSe2. Journal of Applied Physics, 1998, vol. 84, no. 9, pp. 5202–5209. https://doi.org/10.1063/1.368772